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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

CVPR
#139

CVPR
#139

CVPR 2017 Submission #139. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation

Anonymous CVPR submission

Paper ID 139

Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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Adversarial Domain Adaptation
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CyCADA: Cycle Consistent Adversarial DA
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RGB
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SVHN

Digits adaptation Cross-modality adaptation (NYUD)

HHA

Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Figure 4: We evaluate ADDA on unsupervised adaptation across four domain shifts in two different settings. The first setting
is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (right).

MNIST ! USPS USPS ! MNIST SVHN ! MNIST

Method ! ! !
Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [16]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

split as the target domain. This corresponds to 2,186 labeled
source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [23], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [24]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversarial
discriminator output. With the exception of the output, these
additionally fully connected layers use a ReLU activation
function. ADDA training then proceeds for another 20,000
iterations, again with a batch size of 128.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
counter, classification accuracy goes from 2.9% under the
source only baseline up to 44.7% after adaptation. In general,
average accuracy across all classes improves significantly
from 13.9% to 21.1%. However, not all classes improve.
Three classes have no correctly labeled target images before
adaptation, and adaptation is unable to recover performance
on these classes. Additionally, the classes of pillow and
nightstand suffer performance loss after adaptation.

For additional insight on what effect ADDA has on classi-
fication, Figure 5 plots confusion matrices before adaptation,
after adaptation, and in the hypothetical best-case scenario
where the target labels are present. Examining the confusion
matrix for the source only baseline reveals that the domain
shift is quite large—as a result, the network is poorly condi-
tioned and incorrectly predicts pillow for the majority of
the dataset. This tendency to output pillow also explains
why the source only model achieves such abnormally high
accuracy on the pillow class, despite poor performance
on the rest of the classes.

In contrast, the classifier trained using ADDA predicts a
much wider variety of classes. This leads to decreased accu-
racy for the pillow class, but significantly higher accura-
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Robustness to Random Perturbations

Table 2: Generalization on clean test data from an unseen domain. Accuracy on data from the
novel input domain of USPS test set using the LeNet’ model learned with all MNIST training data.
Here, each regularizer, including Jacobian, increases accuracy over an unregularized model. In
addition, the regularizers may be combined for the strongest generalization effects. Averages and
95% confidence intervals are estimated over 5 distinct runs.

No regularization L
2 Dropout Jacobian All Combined

80.4± 0.7 83.3± 0.8 81.9± 1.4 81.3± 0.9 85.7± 1.0

(a) White noise (b) FGSM (c) PGD

Figure 3: Robustness against random and adversarial input perturbations. This key result
illustrates that Jacobian regularization significantly increases the robustness of a learned model
against random and adversarial input perturbations. Accuracy under corruption of input test data
for LeNet’ models trained on the MNIST dataset. (a) Considering robustness under white noise
perturbations, Jacobian minimization is the most effective regularizer. (b,c) Jacobian regularization
alone outperforms an adversarial defense (base models all include L

2 and dropout regularization).
Error bars indicate 95% confidence intervals over 5 distinct runs.

model. Such a regularization technique can be immediately combined with state-of-the-art domain201

adaptation techniques to achieve further gains.202

3.2 Evaluating under Data Corruption203

This section showcases the main robustness results of the Jacobian regularizer, highlighted in the case204

of both random and adversarial input perturbations.205

Random Noise Corruption: The real world can differ from idealized experimental setups and input206

data can become corrupted by various natural causes such as random noise and occlusion. Robust207

models should minimize the impact of such corruption. As one evaluation of stability to natural208

corruption, we perturb each test input image x to ex = dx + ✏ccrop where each component of the209

perturbation vector is drawn from the normal distribution with variance �noise as210

✏i ⇠ N (0,�2
noise), (9)

and the perturbed image is then clipped to fit into the range [0, 1] before preprocessing. As in the211

domain-adaptation experiment above, we take the model parameters with the best test accuracy, and212

then test them on corrupted data. Results in Figure 3a shows that models trained with the Jacobian213

regularization is more robust to white noise than others. This is in line with – and indeed quantitatively214

validates – the embiggening of decision cells as shown in Figure 1.215

Adversarial Perturbations: The world is not only imperfect but also filled with evil agents that can216

deliberately attack models. Such adversaries seek a small perturbation to each input example that217

changes the model predictions while also being imperceptible to humans. Obtaining the actual small-218

est perturbation is likely computationally intractable, but there exist many tractable approximations.219

The simplest attack is the white-box untargeted fast gradient sign method (FGSM) [Goodfellow et al.,220

2014], which distorts the image as ex = dx+ ✏ccrop with221

✏i = "FGSM · sign
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Next Steps
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