Adversarial Domain Adaptation and Adversarial Robustness

facebook Artificial Intelligence Research

Judy Hoffman

Big data

Deep learning

Benchmark Performance

Accuracy

Millions of Images

Challenge to recognize 1000 categories

Dog is

Test Image

Dog is not recognized

→ **?**

Deep Model

Low resolution

Low resolution

Motion Blur

Low resolution

Motion Blur

Pose Variety

Different: Weather, City, Car

Proprietary

Why not collect new annotations?

Private

Domain Adaptation: Train on Source Test on Target

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Target Domain $\sim P_T(X_T, Y_T)$ unlabeled or limited labels

Target Data

Liu 2016. Taigman 2016. Bousmalis 2017. Liu 2017. Kim 2017. Sankaranarayanan 2018. Hoffman 2018.

CyCADA: Cycle Consistent Adversarial DA

Train

GTA (synthetic)

Test

CityScapes (Germany)

Zhu*, Park*, Isola, Efros. ICCV 2017.

Zhu*, Park*, Isola, Efros. ICCV 2017.

CyCADA Results: CityScapes Evaluation

Before Adaptation 5

CyCADA Results: CityScapes Evaluation

Before Adaptation

CyCADA Results: CityScapes Evaluation

Before Adaptation

So Far: Adapting to Natural Shifts

So Far: Adapting to Natural Shifts

What about adversarial shifts?

Adversarial Examples

 $+.007 \times$

 $\boldsymbol{\mathcal{X}}$

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

Goodfellow et al. ICLR 2015.

Training point

Sweep over a grid of

Perturbed Image

Non-smooth Decision Boundary

Non-smooth Decision Boundary

Small perturbations lead to new outputs

g 8 3

MNIST LeNet with L2 Regularization

Smooth Decision Boundary

Small perturbations lead to new outputs

G 3

MNIST LeNet with L2 Regularization

Smooth Decision Boundary

Small perturbations lead to new outputs

G 3

Jacobian Regularization

Jacobian Regularization

c, o

 $\partial \mathcal{X}_{i}$

Jacobian Regularization

MNIST LeNet with Jacobian Regularization

Mostly Smooth Decision Boundary

Larger perturbations needed to lead to new outputs

MNIST LeNet with Jacobian Regularization

Mostly Smooth Decision Boundary

Larger perturbations needed to lead to new outputs

Decision Boundary Comparison

No Regularization

L2 Regularization

Hoffman, Roberts, Yaida, In submission, 2019.

Jacobian Regularization

Robustness to Random Perturbations

Robustness to Adversarial Perturbations

Next Steps

Jacobian regularizer as unsupervised adaptive loss?

Adaptation to an adversarial domain?

Thank you

Taesung Park UC Berkeley

Eric Tzeng UC Berkeley

Phil Isola MIT

Kate Saenko Boston University

Jun-Yan Zhu MIT

Dan Roberts Diffeo

Trevor Darrell UC Berkeley

Alyosha Efros UC Berkeley

Sho Yaida FAIR

Judy Hoffman judyhoffman.io

